This is the second issue of a series of tutorials for the HP Prime, written by Edward Shore. In this session, we will cover MSGBOX, IF-THEN-ELSE, PRINT, and the FOR loop. If you have programmed with the HP 39g, 39g or 39gII, you will recognize the programming as the HP Prime programming language (HPPP) is similar. We are using the latest firmware in this series, available on the website.

How to start?

1. Press Shift + 1 (Program).
2. Press New. It is the second touch key.
3. Enter the name of the program. Pressing the ALPHA key twice will turn on UPPERCASE. A LPHA-LOCK. Pressing ALPHA, Shift, ALPHA will turn on lowercase alpha-lock. To exit any lock, press the ALPHA key one more time. When you’re happy with the name, press Enter.

Rules for Program Names:

1. Letters, numbers, and the underscore character (_) only.
2. The program name must start with a letter.

Structure of a HP Prime Program

A HPPP program is encased of an EXPORT - BEGIN - END structure. The layout is generally like this:

```plaintext
EXPORT program_name(arguments)
BEGIN
commands and comments go here
END;
```

Each line containing a command generally must end with a semicolon (;). A semicolon can by type by pressing ALPHA then the Plus key (+).

Comments can be typed. They are designated by two forward slashes. The slashes are typed by pressing the Divide key (÷). Anything in the line following the two slashes is ignored in running the program.
MSGBOX

MSGBOX takes a string a makes a pop-up message box. Program execution stops until you press a key to acknowledge the message.

Access: Cnms, 6. I/O, 8. MSGBOX

The program COMLOCK: Imagine that you are in charge of setting the combinations for the good, old-school combination locks. This program gives three digit combinations through the use of MSGBOX.

```plaintext
EXPORT COMLOCK()
BEGIN
LOCAL L0;
L0:=RANDINT(3,0,39);**
MSGBOX("SECRET: "+L0(1)+","+L0(2)+","+L0(3));
END;
```

Here is a sample output for COMLOCK:

```
SECRET: 33,13,36
```

Other commands that are featured:

RANDINT(n, a, b) generates a list of n integers between a and b. You can leave n out if you desire a single random integer. Picks may be repeated.

The HP Prime’s default list variables are designated L0 through L9.

Tip!

You can leave out the ELSE part if you only want to test to see if a condition is true. Access the simple IF-THEN structure by pressing Tmplt, 2. Branch, 1. IF THEN.
IF-THEN-ELSE

IF-THEN-ELSE: Program structure:

IF condition THEN
 do if the condition is true;
ELSE
 do if the condition is false;
END;

Access: Tmplt, 2. Branch, 2. IF THEN ELSE

Access <, ≤, ==, etc. by pressing Shift, 6. Note that the double equals is needed to check equality.

PRINT

The PRINT command prints a string, result, or a combination of both onto the Prime's Terminal screen. If PRINT is used, the program will end on the terminal (text output) screen. Press a button to exit.

You can access the terminal screen at any time by pressing the ON button, holding it, and then pressing the Divide (÷) button.

Access: Cmds, 6. I/O, 9. PRINT

The program QROOTS (yet one more quadratic solver, sorry for not being original guys and gals), demonstrates the use of IF-THEN-ELSE and PRINT.

Here I set the setting variable HComplex to 1, which allows for complex number results.

```plaintext
EXPORT QROOTS(A,B,C)
BEGIN
  LOCAL D;
  PRINT();
  HComplex:=1;
  D:=B^2-4*A*C;
  IF D≥0 THEN
    PRINT("Roots are real.");
  ELSE
    PRINT("Roots are complex.");
  END;
END;
```

Tip!
To clear the terminal screen, type PRINT(). This is a good way to clear the terminal screen and I usually use this at the beginning of any program if PRINT is going to be used later on.
PRINT ((-B+√D) / (2*A));
PRINT ((-B-√D) / (2*A));
END;

Examples:

QROOTS(1,5,8) returns:

Roots are complex.

-2.5+1.32287565553*i
-2.5-1.32287565553*i

QROOTS(2,-4,-8) returns:

Roots are real.

3.2360679775
-1.2360679775

FOR

This section will explore the basic FOR structure:

FOR variable FROM start TO end DO
 commands;
END;

All the commands in the loop will be executed a set number of times. Each time a loop finishes, the variable increases by one. The loop terminates when variable=end.

Access: Tmplt, 3. LOOP, 1. FOR

The program SUMDIV takes any integer and adds up the sum of its divisors. For example, the divisors of 12 are 1, 12, 2, 3, 4, and 6. The sum is 28.

Featured Commands in SUMDIV:

idivis: idivis(integer) returns a sequence of all of the divisors if integer. Access: Toolbox, CAS, 5. Integer, 1. Divisors

Any CAS command used in programming will be preceded by “CAS.” Not all CAS commands can be used in HP Prime programming at this time.

DIM: returns the dimensions of a sequence, string, or matrix. DIM must be used instead of SIZE to prevent a Bad Argument error.

For sequences or vectors, DIM returns the length in a list [length].
For strings, DIM returns length as a number.
For matrices, DIM returns the list [number of rows, number of columns].

Access: Cmds, 1. Strings, 9. DIM
The program:

EXPORT SUMDIV(N)
BEGIN
LOCAL S:=0,K,mdiv,ldiv;
mdiv:=CAS.idivis(N);
ldiv:=DIM(mdiv);
FOR K FROM 1 TO ldiv(1) DO
S:=S+mdiv(K);
END;
RETURN S;
END;

Examples:
SUMDIV(12) returns 28.
SUMDIV(24) returns 60.
SUMDIV(85) returns 108.